\qquad Date \qquad

Pythagorean Theorem: Find the Length of the Hypotenuse (page 1)

Find the length of the hypotenuse of each triangle.
Example A:

5 m

$a^{2}+b^{2}$	$=c^{2}$		Write the Pythagorean Theorem
$5^{2}+12^{2}$	$=c^{2}$		Substitute 5 for a and 12 for b
$25+144$	$=c^{2}$		Evaluate
169	$=c^{2}$		Add
$\sqrt{169}$	$=\sqrt{c^{2}}$		Take positive square root of each side
13	$=c$		Simplify

> Therefore, the length of the hypotenuse is 13 meters.

Example B:

$$
a^{2}+b^{2}=c^{2} \quad \text { Write the Pythagorean Theorem }
$$

$$
\begin{aligned}
1^{2}+(\sqrt{5})^{2} & =c^{2} & & \text { Substitute } 1 \text { for } a \text { and } \sqrt{5} \text { for } b \\
1+5 & =c^{2} & & \text { Evaluate } \\
6 & =c^{2} & & \text { Add } \\
\sqrt{6} & =\sqrt{c^{2}} & & \text { Take positive square root of each side } \\
\sqrt{6} & =c & & \text { Simplify }
\end{aligned}
$$

Therefore, the length of the hypotenuse is $\sqrt{6}$ units or approximately 2.45 units.

Name \qquad Period \qquad Date \qquad

Pythagorean Theorem: Find the Length of the Hypotenuse (page 1)

Find the length of the hypotenuse of each triangle.
Example A:

$a^{2}+b^{2}$	$=c^{2}$		Write the Pythagorean Theorem
$5^{2}+12^{2}$	$=c^{2}$		Substitute 5 for a and 12 for b
$25+144$	$=c^{2}$		Evaluate
169	$=c^{2}$		Add
$\sqrt{169}$	$=\sqrt{c^{2}}$		Take positive square root of each side
13	$=c$		Simplify

Therefore, the length of the hypotenuse is 13 meters.

Example B:

$$
a^{2}+b^{2}=c^{2} \quad \text { Write the Pythagorean Theorem }
$$

$$
1^{2}+(\sqrt{5})^{2}=c^{2} \quad \text { Substitute } 1 \text { for } a \text { and } \sqrt{5} \text { for } b
$$

$$
1+5=c^{2} \quad \text { Evaluate }
$$

$$
6=c^{2} \quad \text { Add }
$$

$$
\sqrt{6}=\sqrt{c^{2}} \quad \text { Take positive square root of each side }
$$

$$
\sqrt{6}=c \quad \text { Simplify }
$$

Therefore, the length of the hypotenuse is $\sqrt{6}$ units or approximately 2.45 units.

Pythagorean Theorem: Find the Length of the Hypotenuse (page 2)

Find the length of the hypotenuse of each triangle.
1.

2.

3.

4.

Pythagorean Theorem: Find the Length of the Hypotenuse (page 2)
Find the length of the hypotenuse of each triangle.
1.

2.

3.

4.
6

